Holography of the Surface Layer in the Visible Range of Electromagnetic Radiation for Its Geometric Modeling
Evgeny Alexandrovich Belkin,
Vyacheslav Nikolaevich Poyarkov,
Oleg Ivanovich Markov
Issue:
Volume 6, Issue 5, September 2018
Pages:
72-77
Received:
22 August 2018
Accepted:
5 October 2018
Published:
6 November 2018
Abstract: One of the main problems of modern measurement technology and Metrology is that no non-destructive testing device, due to its design features, allows to make metrological measurements necessary for the construction of a three-dimensional geometric model of the part surface, which is a superposition of the geometric image of the surface and the topography of its microrelief. As a rule, in the calculation of the forming surface of the tool there is no calculation of the topography of its microrelief. This is due to the lack of sufficient information about the geometric structure of the microrelief as a three-dimensional image, due to the use of one-dimensional evaluation parameter. Application for geometric modeling of the microrelief shape of a one-dimensional evaluation parameter-the height of the microrelief, gives an idea of the microrelief as a surface with numerical marks. In the description of the surface with numerical marks, the curvature in the local neighborhood of the given point is not determined, which makes it impossible to construct its full geometric image. The solution to the problem is to create a non-destructive testing device-an optical profilograph, the design of which would allow to measure the geometric characteristics of the surface of the part necessary for structuring its full geometric image and the development of a new geometric approach that allows to obtain this complete geometric image of the part. Installation - optical profilograph refers to measuring equipment, in particular to devices for roughness control. This installation is designed as a complex of non-destructive testing devices of new generation, which is aimed at solving the actual problem in the conduct of metrological measurements required to build a three-dimensional geometric model of the surface of the part, which would be a superposition of the geometric image of the surface of the part and the topography of its microrelief. The principle of operation of the installation is that the holographic image of the part, the scanning indicator of the electromagnetic field are removed cards, which are fixed microrelief profiles of the surface layer, profiles of internal and external surfaces of the part. With these profiles remove the geometric characteristics, which are based on the modular geometric approach allows you to structure the topography of the surface layer microrelief, as well as the internal and external geometry of the surfaces of the part, having a complex shape.
Abstract: One of the main problems of modern measurement technology and Metrology is that no non-destructive testing device, due to its design features, allows to make metrological measurements necessary for the construction of a three-dimensional geometric model of the part surface, which is a superposition of the geometric image of the surface and the topo...
Show More
Evaluation of Academic Competitiveness Based on Scientific Research Papers
Issue:
Volume 6, Issue 5, September 2018
Pages:
78-87
Received:
9 October 2018
Accepted:
13 November 2018
Published:
20 December 2018
Abstract: To evaluate the capabilities of academic and scientific research and to support the optimal allocation of scientific research resources as well as the strategic decisions pertaining to science and technology policy, a scientific competitiveness evaluation model is established based on the value of scientific research papers. Using bibliometric and innovation network analysis, an evaluation index is constructed, including quantitative, influence , and frontier of scientific research innovation indicators. The quantitative indicator is based on the citation’s number of scientific research papers. By using between centrality, the influence indicator is calculated. Considering the hot spots and influence of scientific research papers, the frontier indicator is calculated by between centrality and burst detective algorithms. A comprehensive evaluation of academic competitiveness was completed in the scientific research field using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) algorithm. Empirical research was conducted on the academic competitiveness of countries in the field of graphene. Through the analysis of the scientific competitiveness of major countries, the results showed that the published papers and citations of China ranked in the world. The United Kingdom ranked first in the frontier, and Germany ranked first in influence. From the comprehensive evaluation perspective, the United States achieved good results in quantity, centrality, and hot spots, and ranked first in the world. Germany, Britain, China, and Spain were ranked from second to fifth place, respectively. The results of each index and comprehensive ranking evaluation of graphene were consistent with expert surveys.
Abstract: To evaluate the capabilities of academic and scientific research and to support the optimal allocation of scientific research resources as well as the strategic decisions pertaining to science and technology policy, a scientific competitiveness evaluation model is established based on the value of scientific research papers. Using bibliometric and ...
Show More